Perturbation series for Jacobi matrices and the quantum Rabi model
نویسندگان
چکیده
We investigate eigenvalue perturbations for a class of infinite tridiagonal matrices which define unbounded self-adjoint operators with discrete spectrum. In particular we obtain explicit estimates the convergence radius perturbation series and error Quantum Rabi Model including resonance case. also give expressions coefficients near in order to evaluate quality rotating wave approximation due Jaynes Cummings.
منابع مشابه
Eigenproblem for Jacobi matrices: hypergeometric series solution.
We study the perturbative power series expansions of the eigenvalues and eigenvectors of a general tridiagonal (Jacobi) matrix of dimension d. The (small) expansion parameters are the entries of the two diagonals of length d-1 sandwiching the principal diagonal that gives the unperturbed spectrum. The solution is found explicitly in terms of multivariable (Horn-type) hypergeometric series in 3d...
متن کاملDynamical correlation functions and the quantum Rabi model
F. A. Wolf,1 F. Vallone,2 G. Romero,2 M. Kollar,3 E. Solano,2,4 and D. Braak1 1Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany 2Departamento de Quı́mica Fı́sica, Universidad del Paı́s Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain 3Theoretical Physics III, Center for Electronic Correlations and Magnetism, University of Au...
متن کاملFast Quantum Rabi Model with Trapped Ions
We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2021
ISSN: ['1232-9274', '2300-6919']
DOI: https://doi.org/10.7494/opmath.2021.41.3.301